Giant viruses found in Austrian sewage fuel debate over potential fourth domain

first_img Adenovirus~90-nm diameter The first report of giant viruses, in Science in 2003, jolted researchers. Not only are these viruses larger than many microorganisms, but they can carry more than 2500 genes, surpassing many bacteria. These behemoths required revisions to the evolutionary tree of life, some scientists contended. The standard tree has three main groups, or domains—bacteria, archaea, and eukaryotes. But several researchers proposed that giant viruses are leftovers of a fourth domain of life. In this view, their ancestors were now-extinct cells that over time ditched many genes and became parasites. HIV-1~120-nm diameter Giant viruses found in Austrian sewage fuel debate over potential fourth domain of life By Mitch LeslieApr. 6, 2017 , 2:00 PM Zika virus~45-nm diameter Other scientists, such as evolutionary biologist Eugene Koonin of the National Center for Biotechnology Information in Bethesda, Maryland, saw no need for a fourth domain. “It’s crystal clear that these giant viruses belong to a group of viruses that includes much smaller ones,” he says. He believes they evolved when some of these smaller viruses incorporated more and more DNA from hosts and became massive.Frederik Schulz, a postdoc at the Department of Energy Joint Genome Institute in Walnut Creek, California, and colleagues weren’t planning to test the fourth domain scenario when they teamed up with Austrian scientists to investigate the microbes residing in sludge from the Klosterneuburg plant. They used a method known as metagenomics, which involves sequencing all the DNA in a sample to identify the genomic fingerprints of new organisms, rather than directly isolating cells or viruses. Viral DNA fragments kept turning up. When the team assembled some of these fragments into a genome, they concluded that it belongs to a new giant virus, which they named Klosneuvirus. By applying the same techniques to samples from other locales, the team pieced together genomes of three kindred viruses.These Klosneuviruses stood out because their genomes are more cell-like than those of any previous giant viruses. For example, cells stitch together proteins from 20 types of amino acids, and each has a different enzyme that affixes it to a carrier molecule for delivery to sites of protein synthesis. Other giant viruses carry genes for seven varieties of the attachment enzymes, but between them the Klosneuviruses have genes for all 20. Email C. Bickel/Science Mimivirus~400-nm diameter Tourists visiting the town of Klosterneuburg in eastern Austria often head for the 12th century monastery or the nearby memorial to author Franz Kafka. Virologists and evolutionary biologists, however, may one day pay homage to the town’s sewage treatment plant, which has yielded a genome that appears to be from the most cell-like viruses yet. These oddities challenge the controversial hypothesis that so-called giant viruses are descendants of a vanished group of cellular organisms—a fourth domain of life. Instead, the study argues, these outsized viruses have more pedestrian origins.”I found [the work] very convincing,” says environmental virologist Matthias Fischer of the Max Planck Institute for Medical Research in Heidelberg, Germany. “Based on the data available now, I would not put my money on the fourth domain hypothesis.”Most viruses are much smaller than cells and need few genes because they replicate by co-opting the machinery of their hosts. Certain bird and pig viruses, for example, get by with just two genes, compared with nearly 4400 genes in a common strain of the intestinal bacterium Escherichia coli. Because viruses cannot reproduce independently and lack other hallmarks of cellular organisms, biologists have typically blackballed them from the club of life.center_img Sign up for our daily newsletter Get more great content like this delivered right to you! Country Giant debateLarger than some bacteria, Mimivirus and related giant viruses dwarf other viruses and harbor complex genomes that have raised questions about their place on the tree of life. Country * Afghanistan Aland Islands Albania Algeria Andorra Angola Anguilla Antarctica Antigua and Barbuda Argentina Armenia Aruba Australia Austria Azerbaijan Bahamas Bahrain Bangladesh Barbados Belarus Belgium Belize Benin Bermuda Bhutan Bolivia, Plurinational State of Bonaire, Sint Eustatius and Saba Bosnia and Herzegovina Botswana Bouvet Island Brazil British Indian Ocean Territory Brunei Darussalam Bulgaria Burkina Faso Burundi Cambodia Cameroon Canada Cape Verde Cayman Islands Central African Republic Chad Chile China Christmas Island Cocos (Keeling) Islands Colombia Comoros Congo Congo, the Democratic Republic of the Cook Islands Costa Rica Cote d’Ivoire Croatia Cuba Curaçao Cyprus Czech Republic Denmark Djibouti Dominica Dominican Republic Ecuador Egypt El Salvador Equatorial Guinea Eritrea Estonia Ethiopia Falkland Islands (Malvinas) Faroe Islands Fiji Finland France French Guiana French Polynesia French Southern Territories Gabon Gambia Georgia Germany Ghana Gibraltar Greece Greenland Grenada Guadeloupe Guatemala Guernsey Guinea Guinea-Bissau Guyana Haiti Heard Island and McDonald Islands Holy See (Vatican City State) Honduras Hungary Iceland India Indonesia Iran, Islamic Republic of Iraq Ireland Isle of Man Israel Italy Jamaica Japan Jersey Jordan Kazakhstan Kenya Kiribati Korea, Democratic People’s Republic of Korea, Republic of Kuwait Kyrgyzstan Lao People’s Democratic Republic Latvia Lebanon Lesotho Liberia Libyan Arab Jamahiriya Liechtenstein Lithuania Luxembourg Macao Macedonia, the former Yugoslav Republic of Madagascar Malawi Malaysia Maldives Mali Malta Martinique Mauritania Mauritius Mayotte Mexico Moldova, Republic of Monaco Mongolia Montenegro Montserrat Morocco Mozambique Myanmar Namibia Nauru Nepal Netherlands New Caledonia New Zealand Nicaragua Niger Nigeria Niue Norfolk Island Norway Oman Pakistan Palestine Panama Papua New Guinea Paraguay Peru Philippines Pitcairn Poland Portugal Qatar Reunion Romania Russian Federation Rwanda Saint Barthélemy Saint Helena, Ascension and Tristan da Cunha Saint Kitts and Nevis Saint Lucia Saint Martin (French part) Saint Pierre and Miquelon Saint Vincent and the Grenadines Samoa San Marino Sao Tome and Principe Saudi Arabia Senegal Serbia Seychelles Sierra Leone Singapore Sint Maarten (Dutch part) Slovakia Slovenia Solomon Islands Somalia South Africa South Georgia and the South Sandwich Islands South Sudan Spain Sri Lanka Sudan Suriname Svalbard and Jan Mayen Swaziland Sweden Switzerland Syrian Arab Republic Taiwan Tajikistan Tanzania, United Republic of Thailand Timor-Leste Togo Tokelau Tonga Trinidad and Tobago Tunisia Turkey Turkmenistan Turks and Caicos Islands Tuvalu Uganda Ukraine United Arab Emirates United Kingdom United States Uruguay Uzbekistan Vanuatu Venezuela, Bolivarian Republic of Vietnam Virgin Islands, British Wallis and Futuna Western Sahara Yemen Zambia Zimbabwe Click to view the privacy policy. Required fields are indicated by an asterisk (*) F. SCHULZ ET AL., SCIENCE 356, 6333 (7 APRIL 2017) ©AAAS Researchers detected this giant virus particle in Austrian sewage. C. BICKEL/SCIENCE Polio virus~30-nm diameter The lifelike genomes of these viruses offered a chance to test whether they descended from a fourth domain of cellular life—or from other viruses. “We thought, ‘Wow, this could be proof for this idea,’” Schulz says. After teaming up with Koonin’s lab, the researchers compared the sequences of the different attachment genes across a range of viruses and living organisms. Their analysis indicated that giant viruses had gradually picked up the attachment enzyme genes from different hosts. “There’s no evidence for the fourth domain, and this paper confirms it,” says Curtis Suttle, an environmental virologist at the University of British Columbia in Vancouver, Canada.However, co-discoverers of the first giant virus remain holdouts. Microbiologist Didier Raoult of Aix-Marseille University in France argues that the enzyme attachment genes are a shaky foundation for evolutionary conclusions, because they often swap sequences or undergo other changes that blur their origins. Geneticist Jean-Michel Claverie, also of Aix-Marseille University, notes that the study authors identified larger-than-average viral particles in their sludge samples, but didn’t demonstrate that the genomes they assembled belonged to these viruses. “I am waiting to see a real virus isolated with its host in a [test] tube before I would believe any of their evolutionary interpretation.”last_img

Leave a Reply

Your email address will not be published. Required fields are marked *